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1 Introduction

The classical trace theorem in Sobolev spaces asserts that the restriction map of a distribution
to a codimension one hypersurface extends uniquely to a continuous linear operator from
H*(IR¥) to H*~V*(IR*'), if s > 1/2. It is also well known that this result is sharp, see
Taylor [18] for details. However, dealing with the solutions to hyperbolic p.d.e., one may
reasonably expect an improvement of their trace regularity. This is actually the case if the
equation with smooth coefficients is strictly hyperbolic with respect to a codimension one
trace hypersurface, since then standard energy estimates will yield that the trace map is from
H*(IR*) to H*(IR*"") Jocally for any real s. Unfortunately, the same idea will not work if the
trace surface is timelike, essentially because the presence of grazing rays prohibit the direct
application of energy estimates. See Symes [16] and Bao and Symes [2] for more comments
on this aspect. It is obvious that the nonsmooth coefficients will introduce new singularities
to the solutions so that only limited initial regularity can be propagated.

In [16], Symes proved a trace theorem for the solution of a second order multidimensional
wave equation with constant coeflicients: For finite energy initial data compactly supported
away from the boundary (with the absence of the grazing rays), the trace is of class HJ .
which is as regular as the solution in the interior. Some similar trace regularity results were
obtained by Lasiecka and Triggiani [10] for the solutions of second order hyperbolic mixed
problems based on the application of the Laplace-Fourier transform. See also Lasiecka and
Triggiani [11] for some sharp global trace regularity results for second order hyperbolic

equations with smooth coefficients and Neumann boundary conditions.
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Recently in [2], we proved a trace theorem for general linear p.d.e. with smooth variable
coefficients, applying the Hormander-Nirenberg pseudodifferential cutoff technique and the
method of energy estimates. Our theorem shows that the difficulty above may be resolved
by imposing more smoothness against grazing ray directions.

Roughly speaking, the analysis in this paper is similar to that of Bao and Symes {2]. Two

major differences are:

e Since in this work our attention is restricted to the second order equation, compared

to the general case in [2] a much simpler ¢.d.o. cutoff of the operator becomes possible.

e Note that the model problem has nonsmooth coefficients; therefore the propagation of
singularity theorems, Theorems 2.1-2.2, have to be involved in the analysis in contrast
to [2] where the coefficients were assumed to be smooth and no side condition was

introduced and discussed explicitly.

In this paper, a trace regularity theorem on a time like surface is proved for the solution of
a multidimensional linear acoustic wave equation with nonsmooth coefficients. Our theorem
indicates that with microlocal restrictions against tangential oscillations in the coefficient,
the boundary value is just as regular as the solution, in particular as regular as the coefficients
allow. These properties of traces also indicate that the conclusion of our trace theorem is
optimal. However, as compared to the one dimensional problem, a much higher degree of
overall smoothness has to be imposed.

Because of the non-hyperbolicity of the operator with respect to a time-like hypersurface,

a pseudo-differential cutoff of the operator and results on propagation of singularities are



necessary in order to apply the method of energy estimates. Moreover, the presence of
nonsmooth coefficients demands various results in nonsmooth microlocal analysis.

In Chapter 2, Rauch’s lemma on the algebraic property of microlocal Sobolev spaces and
a Beals-Reed linear propagation of singularities theorem are extended. Our extension of the
Beals-Reed theorem guarantees that under similar hypotheses some lower order microlocal
regularity of the solution (for instance, H? -regularity, for s > 0) will also propagate along
the null bicharacteristics.

In Chapter 3, we prove a trace regularity theorem for the solution of a linear acoustic
wave equation by using the propagation of singularities theorem introduced in Chapter 2,
along with an pseudodifferential (y'.d.0.) cutoff technique and standard hyperbolic energy
estimates.

It is appropriate to conclude this introduction with some general remarks on the useful-
ness of our methods. In this paper, we only consider a simple second order hyperbolic p.d.e.
with nonsmooth coefficients at lower order terms (constant coefficients in the principal part).
Without any further difficulty, similar results may also be obtained for higher order hyper-
bolic p.d.e. with nonsmooth coeflicients at lower order terms. A combination of our earlier
result in [2] (for smooth variable leading terms) and the ideas in this paper may lead to a
analogous trace regularity result for a second order strictly hyperbolic p.d.e. with smooth
coefficients at the principal part and nonsmooth coefficients at the lower order terms.

As one can expect, the case when nonsmooth coeflicients are present in the principal part
of the operator is much more difficult to study. One of the main reasons is because that

our Beals-Reed type result on propagation of singularities (Theorem 2.1) is possible because



the highest order symbol of the operator is smooth, so that a pseudo-differential cut-off
could be found following Nirenberg [13] such that the principal part of its commutation with
the differential operator vanishes. However, such a pseudo-differential cut-off will not be
available when coefficients of the principal part of the operator are nonsmooth, see Beals
and Reed [7] for more discussions. For this problem, some partial results have been obtained
and will be reported elsewhere.

Notation. Throughout this work, the reader is assumed to be familiar with the basic
calculus of Pseudodifferential Operators (“ 1p.d.o. ”) as stated in Taylor [18] and Nirenberg
[13]. A classical ¢.d.o. P of order m is denoted as P € OPS™ with its symbol p € S™.
ES(P) stands for the essential support of operator P. W F(u) denotes the wave front set of
a distribution w. H* is the standard L3-type Sobolev space and Hj,_ means a local Sobolev
space. (€) means (1 + |£]*)!/2. The Fourier transform of a distribution u is expressed as 4.
Usually, the constant from the Fourier Transform is assumed to be absorbed by the integral.
For simplicity, C serves as a generalized positive constant the precise value of which is not

needed. Finally, xr is the characteristic function of a set I'.

2 Propagation of Singularities

Our main result in this chapter is a linear propagation of singularities theorem which is an
extension of Theorem 1 in [6] (“the Beals-Reed theorem”). The theorem assures that weaker
regularity (than in [6]) of the solution may also be propagated along the null bicharacteristics.

The main ingredients in our proof are an extended Rauch’s lemma and a commutator lemma.
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We also take care of an interesting special case (which often appears in practice) where the
coefficients depend only on some of the variables and show that for this case better regularity
results will become possible.

We prove the theorem by following the general scheme of the proof of the Beals-Reed
theorem in [6]. The pseudodifferential cutoff technique in their proof was analogous to a
proof of Hérmander’s theorem (see [8] for the original form) as described in Nirenberg [13].
Except for the use of Rauch’s lemma since nonsmooth coefficients and right-hand side were
present, the key step was a commutator lemma which allowed them to compute the action
on H® 0 H ,(v) of a commutator of a ¢.d.o. with a differential operator whose coefficient
was nonsmooth. Then a local existence theorem with microlocal hypotheses completed their
proof.

The following estimate will be used frequently. Other related kernel estimates may be

found in Beals [4] and Beals and Reed [7].

Proposition 2.1 (Rauch and Reed [15]) Define

T,0(6) = [ K(E ) F(n)g(€ — n)d

where f,g € L?. Then the estimate

sl < ClIflc2llgllze

holds if K(&,n) can be decomposed into finitely many pieces, i.e. K =¥, Ki(£,n), each of

which satisfies one of the following conditions:

(1) sup [1Ki(&,m)dy < Co < +oo,
'3



(2) sup/|1&'i(§,7l)|2(l§ < Cy < +00.
n
An immediate consequence of Proposition 2.1 leads to a key estimate in this chapter.

Corollary 2.1 Define

, _ [ fmg(€—n)
Tonlt) = / (€=
where f,g € L*(IR™), a+ 3 > n/2. Then

1Ty n(EMlee < Cllfllzellgllze -
We will also need:

Proposition 2.2 Assume that K’ is a closed cone which is strictly contained in an open

cone K. If £ € K', n € K¢, then

(1) € —n| > CilE], Cy > 0;

(2) if |€] > Co > 0, then (£ —n) > C{€).

2.1 Microlocal Sobolev spaces

We present some basic properties of microlocal Sobolev spaces. Only new results will be
proved.

The standard Schauder’s lemma asserts that H*(IR") is an algebra for s > n/2. Con-
cerning the lower order Sobolev spaces, one can generalize Schauder’s lemma in a number of

ways.
Lemma 2.1 [fu € H*(IR") and v € H®2(IR"), with $; + s3 > 0, then

uv € H'min(sl,sg,sl+52—n/2—§) f01‘ any §>0.
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See Beals [4] for a proof when either s;, 52 > 0 or 51,52 < n/2 and $1+ 52 > 0. The complete
proof may be found in Bao [1].

For family of distributions, we state a slightly weaker algebraic property.

Lemma 2.2 (Generalized Schauder’s Lemma) If s1,8; > 0, u(z) € H*(IR™), v(z,y) €

H*(IR"), and 1 < ng < n. Then
u(z)v(x,y) € H(R") ,
with s = min{sy, sz, 1 + $2 — no/2 — 6}, for any 6 > 0.

The proof is a combination of some kernel estimates and Young’s inequality, see [1] for a
complete proof.
It is evident that the microlocal Sobolev spaces give a precise description about how

regularity and singularities are propagated for solutions to linear strictly hyperbolic p.d.e..

Definition 2.1 v € H* N H} (w0, &) if there exist ¢(z) € CG(IR™) with ¢(zo) # 0 and a
conic neighborhood v C IR™*\{0} of & such that
(€ (6u)"(€) € L*(IR") and (&) x+(€)(¢)"(£) € L*(IR") .

To work on microlocal Sobolev spaces, Rauch’s lemma is essential. It gives the algebraic

property of this interesting class of spaces. Here, we prove an extended Rauch’s lemma.

Lemma 2.3 Suppose that for some (xo, &) € T*(IR™)\0 where (zo, Yo, é0,m0) € T*(IR™)\0
(1 < ng < n), the distributions w, v satisfy u(z) € H* N H? ,(z0,&) and v(z,y) € H' N

H? (%0, Y0, E0,m0), with ng/2 < s, 0<1<s,q, and g <l+s—mng/2. Then

u(z)v(z,y) € H' N HE (T, Yo, €0y M0) -



Proof. The fact that uwv € H._ comes from Lemma 2.2. W.L.0.G., we may assume that
u,v have compact supports in their own spaces. Moreover, we only prove the lemma for
the case ¢ > s; a natural modification of the proof will yield the conclusion for ¢ < s. Let
K be a conic neighborhood of (&y,7%0) which is small enough so that v € H' N H? ,(K) and
u € H*N H!,(T), where I is the projection of K on the {-space. Let K' CC K, a strictly

/

smaller conic neighborhood of (€, n0). I is the projection of K’. It suflices to show that

l/’b(éa 77)/\/1\'"(57 77)('5, 77>q € Lz(IR’n) .
Write u = uy + uy, v = v; + v9 such that

up € H® | uq € H? ;and supp u; CI'°, supp up, CI',
vy € H', vy € HY ,and supp 9, C K¢, supp 9, C K .
Then

UV = U1V + w1v2 + ugvy + uqvsy .
According to Lemma 2.2, uyvy € HY, therefore it suffices to show that
W = uv — upvy = wgvy + Wi + v € H'N H!,(K').

Let
(§)*01(&) = f1(§), (€)742(€) = f2(§)

<f,77>l’5’1(f,"7) = 91(5577) ) (5777>q{)2(§’77) = 92(5,7]) 9
then f; € L*(IR™) and ¢; € L*(IR"), i = 1,2. Thus we may decompose

EINklEmMW(EN =L+ L+ 15,



where

_ q/ Xk (& m)xr(§)xre(§ — &,n) f: ( 1)91(€ — &1,m)d&é
<£1> <€ 517 ) ’
A
n)

/\A (€.m)xre(&)xr(§ = &,n) f1(1)g2(€ = &1,m)d6n
<€1> <€ 517 ¢

— ) /~\A (€, m)xre(€) e (6 — &) fu(€0)n (€ — &1, m)déy
s (6 (€ — &) '

b

Therefore, to accomplish the proof, we only need to show that I, € L*(IR") (i = 1,- - -, 3).

On support I, (£ —&,n) € K¢ and (&,7) € K' = (£1,0) > C{£,n). Hence

2161)91 15 dl
]hK/lfgiséa)lf,

therefore an extension of Corollary 2.1 and the hypotheses will yield

1|2z 0rmy < Cllgallzell fallc2 ;

On support I, & € 1'%, (€,m) € K' = (£ - &,n) > C{€,n), Young’s inequality gives

| A1) |

ez GE

o= C

lg2llz2(rn) -
Li(¢)

Thus, one gets from the hypothesis s > no/2 that

| 2|2 wmy < Cllfillzzoreoyl|g2lizerry

On support Is, & € I'°, (€ — &,n) € K¢, (€,m) € K. Then, since ¢ < { + s — ng/2, one may

apply an extension form of Proposition 2.3 below to obtain

3]l L2rmy < Clfillzzllgnlize-
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Remark on Lemma 2.3. Note that for ng = n and [ = s, this lemma becomes the original
Rauch’s lemma. Since [ can be any constant between 0 and s, ¢ can be any number in the
interval [, s + | —ng/2), Lemma 2.3 is indeed an improvement of Rauch’s lemma (even when
ng = n).

We claim that like Rauch’s lemma, Lemma 2.3 cannot be strengthened. The following

result and an example exhibit the extent to which the result is applicable.

Proposition 2.3 Let Ky, Ky, and K be cones in IR™\0 and assume that u; € H*(IR"™) and
ﬁl/VF(-wi) C K;, i = 1,2, where 11 denotes the projection on the second factor (or on the

frequency space). If K CC K{ N K, then
Yk (D)(wiw;) € HY ., if§< s +83— n/2.

Remark. When § < s; + s; —n/2, the result is due to Rauch (Theorem 2.2 in [14]); the
extreme case was first observed by Meyer in [12]. The proposition cannot be strengthened

because an example of Beals, see Beals [3] pages 15-16 for details.

2.2 Commutator lemma

Having introduced the basic concepts of microlocal Sobolev spaces, we now present a commu-
tator lemma which is necessary in order to prove any results on propagation of singularities

for a p.d.e. with nonsmooth coefficients.

Lemma 2.4 (Generalized Commutator Lemma) Let py1(z,y,&,n) € SYIR™) and by(z,y,&,7) €

S°(IR™), and assume that for some (x9,&) € T*(IR™), (20, Y0, &0,m0) € T*(IR™) (1 < ng <

11



n), a(x) € HNH? ,(20,&) and v(x,y) € H'NH? (0, yo, &0y 70), with 14ng/2 < 5,0 <1< s,

g, and ¢ <1+ s— (1 +no/2). Then
[bo, api]v € H'n H. (20, Yo, €0, 0) -

We shall only prove this lemma for the case ng = n; the general case follows after some
obvious modifications. The proof contains two steps: Proposition 2.4 offers the local version

of the commutator action, while the microlocal version is given as Proposition 2.5.

Proposition 2.4 Let py(x,£) € S*, by(x,£) € S° be properly supported, let 1 +n/2 < s, and

assume that a(z) € H® and v(z) € H" with 0 <1< s. Then
[bo(2, D), a(x)p1(z, D)]v(z) € H' .
Proof. Assume that by, p; depend on £ only, and v, a are compactly supported (the general

case requires some obvious modifications). We only consider [ > 1 case. A slightly different

analysis will lead to the conclusion for 0 <[ < 1.

[bo(D), a(z)p: (D)]v(€)
= bo(é)/&(n)p](é —n)o(§ —n)dn — /&(n)p1(€ —n)bo(§ —n)o(E —n)dn

= / a(n)(bo(&) — bo(& —n))pr(€ —n)(€ —n)dy .

Write a(n) = f(n)/(n)*, 8(€ — 1) = g(¢ = y)/{€ = )", then f,g € L% Thus

(@' Too( D), ale)pn (DYele) = [ K& mF(m)a(¢ = myd

where

< O 1ho(€) — bo(€ — 1)
T pE-mir

12
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By Proposition 2.1, it suffices to divide K into finitely many pieces so that

sup/ |K:(&,n)|%dn < oo, or sup/|Ki(§,77)12df < 0.
¢ n

But this is obvious from the given regularity assumptions and Proposition 2.2, together with

the following facts: For |n| > [€]/2 and |€ — 5| > |€]/2,

C

Kl < :
K< e

For [n| > [€]/2 and |¢ —n} < [£]/2,

we—C o C
S T

For [n| < |€]/2, € — 5 = &, thus [bo(€) — bo(& —n)| < C(n)/(£), and consequently,

K] < Ce'm ¢

(m)s(€)!=1(€)  (m)>=1~

Proposition 2.5 Let pi(x,£) € St, by(2,€) € SO be properly supported, and assume that
for some (xo,&) € T*(IR™M\O, a(x) € H* 0 H? ,(20,&) and v(z) € H' N H? ,(x0,&), with

l+n/2<s,0<1I<s,gandg<l+s—(1+n/2). Then

[bo(x, D), a(x)pi(a, D)|v(z) € HE (20,&0) - (2.1)

Proof. As before, after making some simplifications, we have

[bo(D), al@)p1(D)]v(§) = ./&(77)('1)0(5) = bo(§ = 1))p1(€ —n)o(€ — n)dn .

13



Let K be a small conic neighborhood of & such that « € H*NH? ,(K) and v € H'NH? ,(K).

ml

Let K’ be a strictly smaller conic neighborhood of &y; then in order to prove (2.1) it suffices

to show that

Vi (E)E) [bo(D), a(z)py (D)o (€) € L. (2.2)
Write

o xrma(n) | xxe(n)aa(n)

a’(n) - <77>7. + (77)3 bl (23)

il =) (E—n) n xxe(€ = n)va(§ =)
(& —n)e (€ —n)! ’

where a;,v; € L? (i = 1,2).

We only prove (2.1) for the case where ¢ > s, since if ¢ < s then (2.3) will become

= )
(n) = e

Substituting (2.3) and (2.4) into (2.2), we then have

, and the same analysis will go through with much simpler arguments.

el T PE) = 32 [ Kiesma€)es(€ — nhd

i,7=1

where

X (ENE Nk (M) (€ — ) (bo(€) — bo(§ — )€ —n)
(n)s (€ —n)e ’

X () Xk () xre(€ = ) (bo(€) = bo(§ — 1)){€ —n)
(ma(€ —n)! ’

Xr(E)E) N we (XK (§ ~ 1) (bo(€) — bo(€ — 1)) (€ —n)
(n)s(€ —n)e ’

(4) Kp(e,n) = SO0 weln) k(€ = 1)(bol€) — bo(€ —n))(€ — )
’ (n)*{€ —n)* '

(l) I(ll(éan) =

(2) Kun(n) =

(3 ) Ka(&,n) =

It follows from Proposition 2.1 (essentially Cauchy-Schwarz inequality) that the corre-
sponding estimates of the kernels will complete the proof:

14



(1) Ky; will be handled exactly as in Proposition 2.4, knowing the fact that 14+n/2 < q.

(2) Since ¢ > s, the hypothesis implies that { —1 > n/2. On supp Ki3, £ —n € K¢,

£ € K= (n) > C(E); hence

C

if |6—nl>ClE|, then |Kiy| < (e

, , C
if 1€]2ClE—n|, then [Ki| < E g1
(3) On supp Ko, p € K6, €€ N'= (£ —n) > C(£). Now
if |n| > 1€]/2, then [Ny < ————Q————l- , s—1>n/2;
(€ —m)e-

if |n] <1€]/2 then §—n =&, thus [bo(€) — bo(€ — )| < C(n)/(E)

and it follows that Ko <

Clerme-n . ¢ .
T i) S et lers—1>n/2

(4) On supp K9, € K¢, & —n € K¢, £ € K’ = Proposition 2.3 can be applied to

treat this term since ¢ <1+ s — (1 +n/2).

2.3 Propagation of singularities theorem

We are now ready for a formal statement of the main result of this chapter: a linear prop-

agation of singularities theorem for .d.o. equations with nonsmooth coefficients at lower

order terms. The proof follows exactly the proof of Beals-Reed theorem in [6] with the orig-

inal Rauch’s lemma replaced by its extension Lemma 2.3 and the commutator lemma of [6]

replaced by Lemma 2.4. Therefore we omit the proof.

15



Theorem 2.1 Let p,,(x, D) be a strictly hyperbolic homogeneous 1.d.o. of degree m > 2,
palz,€) € S™Y, ps(x,€) € S™72, with v = (21,22) € R™ x R*™, 1 <ng <n. Let T
be a null bicharacteristic of p,, passing through (xo,&) € T*(IR")\0. Denote K = II(T'),

I : T*(R") — T=(IR"™) the projection map. Assume that
(1) 14+ ng/2<s, 0<1<s,q andqg<l+s—(1+ne/2);

(K) and ag € H*"' 0 HSHK);

mé

(ii) ao € H* N H!

mi

(iii) v € H*™=2 0y HE™ 2T and f € H' n HL,(T);

mf

(iv) v e HE" 2 (20, &), for some 0 < e < 1,

mi

and that
[Pm(z, D) + Taa(x1)palz, D) + Bag(z1)ps(z, D)Jv(z) = f(z) .

Then

v € HIA™HTY

m{

An immediate consequence of Theorem 2.2 is a theorem on propagation of singularities
due to Beals and Reed, Theorem 1 in [6].

Remark on Theorem 2.1.

Notice that the Beals-Reed theorem as well as Rauch’s Lemma are designed for the study
of nonlinear propagation of singularities. In that case the coefficients or the right-hand side,
roughly speaking, have same (or closely related) regularity as the solution to the problem.
Theorem 2.1 deals with much more general situations, since ! could vary from 0 to s and

g€ [l,l+s—(14no/2)) (unlike in the Beals-Reed theorem).

16



We conjecture that Theorem 2.1 cannot be improved much concerning the regularity
requirements for the coefficients and right-hand side, since the conclusions of Lemma 2.3
and Lemma 2.4 cannot be strengthened.

The most precise information about the propagation of singularities may be obtained
in the case of one space dimension. Roughly speaking, the improved microlocal regularity
is then propagated along null bicharacteristics with very few restriction on the order of
smoothness. This certainly is not implied by Theorem 2.1. Note that the result itself is not
too surprising if one observes that the one dimensional wave operator can be factored into
products of differential operators. But it suggests a substantial difference between the one

dimension and multidimension for hyperbolic p.d.e., which is somehow remarkable.

3 Trace Regularity Theorem

3.1 Properties of ¢.d.o.-like operators

It is evident that a smooth family of ¥.d.o. P(z,y, Dy) € OPS™(IR*), for each y € IRF*
with kg < k, which may be denoted as P € C*(IR*7* OPS™(IR*)), is not necessarily a
i.d.o. in IR¥, see Bao and Symes [2] or Taylor [17]. In [2], we concluded that a smooth family
of ¥.d.o. in fact behaves like a .d.o., hence will be called a 1.d.o.-like operator.

From now on, Il; : X € T"(IR¥) = Y € IR* x IR serves as a map for k > ko,

(X)) = {(v,y,8) €Y : (x,y,&n) € X}.

17



Recall that the normal bundle of a foliation IRF = IRF~* x IR* is the set
N = {(z,y,€6 ) € RF x RF % x RF x RF™ ¢ =0} .

We now recall a fattening lemma (the Lemma in Bao and Symes [2]). The usefulness of

this lemma will become clear in the proofs of the coming trace theorems.

Lemma 3.1 (Fattening Lemma) Let B(z,y, D;) € C®(R¥ % OPS™(IR*) and A(z,y, Dy, Dy) €

OPS™ (IRY), where 1 < ko < k. Let
N = {(l,f) S IR‘k X IRk > (617' : '7&20) = 0}
be the normal bundle of R* x R¥% . Also, assume that

(1) A is microlocal elliptic on a conic set EII(A), with N CC El(A);

(9) we H 0 A (T RO\ EWA)] N 1T ES(B(y, )));

mé
(3) Apu € HEZ™TH(IRY), where ¢(z) € C(IRF).

Then

Béu € HIZ™+1(IRF) |

in addition, if B is either a convolutional operator or its symbol has compact support in

spatial variables,

Béu € H'""™+1(IRF) .

Remark. The lemma provides a convenient way to determine the regularity of the action of

a smooth family of i.d.o. on a distribution under some appropriate hypotheses. This lemma
plays a dominant role in deriving our trace regularity theorem.
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Furthermore, an estimate can be obtained by carrying out all the corresponding estimates

in the proof of Lemma 3.1:

Lemma 3.1’ Under the assumptions of Lemma 3.1, the following estimate holds:

l|poBoullhms1 < Clloulln + ClldoAdu|lh—mos1 + C|ldoPdul|ns1

where ¢o(z) € CE(IRY), P € OPSC and ES(P) C a sufficiently small conic neighborhood of

[ = [T(IRFNEINTIZYES(B(-y, ) and p=1 on TN {(z,£) : €] > 1}.

3.2 Construction of a cutoff

From now on, the space variable is always denoted as (2',z,) € R*™! x IR, n > 2, and the
Fourier variables dual to ¢, @ are w, & respectively.

For convenience, we construct a cutoff in Lemma 3.2 below by following Nirenberg’s
construction of ¥.d.o. cutoffs in {13]. Although the lemma is stated for the wave operator
O = 97 — A (A is the n-dimensional Laplacian), which is what we need in this work, it is
clear from the proof that the corresponding result for general operators can be established

with no further difficulty.

Let

O(w,t.é,w) = (1/2)(&)2 - |€i2) )

the bicharacteristic strips of O are defined by the Hamiltonian System
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The null bicharacteristics of O are those that satisfy w? = [£]? . For example, one can easily

write down the characteristic through the point (0,0, £, wo) with w3 = |é|* as
{(2,t,6,w): @ =20 — (bo/wo)t, € =&, and w =wp} .
Lemma 3.2 Given a conic set vy, there exists a B € OPS® such that
(1) [B,B]) € OPS°;

(2) B is elliptic on the null bicharacteristics (Hamiltonian flow) generated by the

wave operator O out of v.

Proof. According to Nirenberg’s proof of the theorem of propagation of singularities, we
can find a ».d.o. A of order zero for every null bicharacteristic of O out of v such that A is
elliptic on a small conic neighborhood of the bicharacteristic and [A, O] € OPS°.

Now B may be constructed in the following way: B = Y. A where A is defined as
above. Then B € OPS°, it can be arranged to be elliptic on the Hamiltonian flow out of
v, and [B,0] € OPS°. Moreover, the local compactness of the unit sphere ensures that the
summation is finite. o

Remark: The same idea could lead to the existence of B € OPS® with all the properties
of B and, moreover, [B,0] € OPS~>. However, it is evident that with the presence of
nonsmooth coefficients, the fact that [B,0] € OPS™ will not benefit our analysis any

further.



3.3 Trace theorem

In this section, we present a trace theorem for a linear acoustic wave equation with nons-
mooth coefficients at lower order terms. With the presence of nonsmooth coeflicients, the
extended Beals-Reed theorem (Theorem 2.1) is necessary to describe how the singularities
are propagated.

In order to derive the corresponding trace estimate on the solution, we need a Garding’s
type inequality concerning the microlocal ellipticity. A simple exercise of the calculus of

¥.d.o. gives the proof, see Bao [1] for details.

Lemma 3.3 Assume that @, € OPS™, Q, € OPS™, with my,my € IR. Furthermore

assume @ is elliptic on ES(Q1). Then for anyr € R, Q and ' two open bounded sets of

R™ with Q@ CC ', and u € CF (),

HQluHs,Q < C"Q2“Hs+m1—mzyﬂ’ + C”“HT,Q’ .

It is convenient to introduce a useful notation.

Definition 3.1 Let Q C IR* be open and bounded, v C T*(Q). A constant C is said to
depend on the H* N H? ,(y)-norm of u € C(IR) if for any conic neighborhood T' of v there

exists a .d.o. of order zero with
o BS(Q)CT
o g=1onyN{(z,&): || >1}

and C depends on ||ulls + ||Qull.q.



We are now ready to show a trace regularity theorem.
Theorem 3.1 Suppose that s > 3 + n/2 and that u solves the problem

[O — Vo(2): V]u(z,t) = f(z,1),

w(z,t) € H'nHE (), near {t=0}.

m{

with

7= Qx {(6w) € R, &+ [ = o and €] < col€']}

for small g > 0. Q is a compact subset of {(z,t) € R™ | |t|,|zn| < &} and
I’ = a conic neighborhood of v .

Assume that
(i) we H='n [ (1), 1 <1< s;

(i1) Vo(z) € H*=1 N H]

T

map;

(i) fe H nH!,

(T).

Then

]
U Il'n—_-oe H[OC ?

in fact,

(¢u)|en=olli < Cillooulli + Cllgoflli-1 + Cllor1Pdoflli

JR) T T TR — K C T*(IR") is the projection

(3.3)

holds for a +.d.o. P of order zero ES(P) C T, where ¢(z,t), ¢o(,t), and ¢1(z,t) €

C&(IR™) are supported near the trace hypersurface {z, = 0} and the constant Cy depends
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on H"1 0 HL (K )-norm of ¥NVo with » € CP(IR") and supp(¢), supp (1) C supp(do),
do > 0 on supp(¢) and supp (¢1).

Idea of the proof. As we mentioned before, since the hypersurface {z, = 0} is a time-like
surface, the method of energy estimates cannot be applied directly. To cure this difficulty,
we shall alter the wave operator O by a 1.d.o. cutoff technique so that {z, = 0} becomes
a space-like surface. In other words, we shall construct a strictly hyperbolic ¢.d.0. equation
with respect to the trace {w, = 0}. Since the operator in our construction is differential in
Zn, the standard method of energy estimates (for example in John [9] or Taylor {18]) can
be applied to get the basic estimate. Then, the microlocal hypotheses and Theorem 2.1

together with Lemmas 3.1, 3.2 will complete the proof.

Proof. Let 40,7 be two conic subsets of the set Qp x {(¢/,w) € R™, |w| > |€'|} and let
Mg C Mayi™, where [l maps a set to its second factor or the frequency space, and
is generated by € in such a way that each point in 3 may be traced back to {2 along the

characteristics of the operator O. That is,
Qo = {(x,t) € R™', I(wo,t0) €N, @ =30 — M, |A =1} .

Then, we can find a convolutional operator @ € C*(IR,OPS°(IR")), ¢ = q(¢,w), that

satisfies

o £S(Q)C v and 0 <@y < 1

o QO =1on Yo N {(.’L‘,t,gl,w), |(€,~w)| > l}v
where Qo(€',w) is the principal symbol of §). Define another operator E as
, def.
E - (2[:]17’.t + (] - Q)Aa:’,t 3

23



where O,y = 0F — 0% and Ay = 07 + 02

Observe that the principal symbol of £
Eo = Qo(w? =€)+ (1 = Qo)(w® + [€1) 2 C(w* + [€) ,

for {(w, &) > 6, with some positive constants C,6. Hence, E is an elliptic 3.d.o. of order
two.
Let ¢ = ¢(a,t) € CE(IR") with supp ¢ C {|z.] < €}. We then have a strictly

symmetric hyperbolic problem

(_al?vn + E)(])U = Oou+ ([ - Q)(A:L",t - Dx’,t)d)u
(3.4)
= [B.¢Ju+tof +6Vo Vu+ (I - Q)(Awy — Opr)du .
Since ¢ is compactly supported, we actually have a symmetric hyperbolic Cauchy problem
with zero Cauchy data with @, playing the role of “time”. It follows from a hyperbolic energy
estimate in Taylor [18] pages 73-75, by knowing that [O, ¢] and [A, ; — O, 4] are operators

of order one and two respectively, that

H(ou) lzp=0 |1 L C|lrhs. of (3.4)]1—s
< Clligsulli + o fllir + 16Ve - Vullioy + (1 — Q)% dullia] (3.5)

where ¢ € C§°, and the second inequality makes sense because @) is a convolutional operator.
From the hypotheses, a natural extension of the Proposition in Beals and Reed [6] pages

176-177 leads to the fact that u € H,.. Thus, the generalized Schauder’s lemma (Lemma
2.2) yields

6Vo -Vue H-L .



Therefore, to complete the proof it suffices to show that
(I —Q)0%du e H™,
which requires the use of Lemma 3.1. In order to apply Lemma 3.1, we choose B =1 —@Q €
C=(IR',OPS°(IR")) of order m = 0, A = O of order mg = 2, and h = [ — 2 in the statement
of Lemma 3.1.
Let us look at the assumption (1) of Lemma 3.1, Ell(A) (the elliptic region of A = O)

is easy to determine. Actually O is elliptic away from the light cone {w? = |£|*}. To verify

hypothesis (3), one only needs to look at
00%ou = [0,9%¢)u + 02¢(Vo - Vu + ),

which is bounded by the first three terms in (3.2); hence the same arguments yield that

08%¢u € H'=3. Therefore, the only assumption that needs to be checked is that
we HEHT(IR"™\ENO)] NI ES(I - Q))

and this demands the Beals-Reed type theorem on propagation of singularities (Theorem
2.1) and Lemma 3.2.

In the statement of Theorem 2.1 choose
(m,ng,n,l,s,¢q,¢)=(2,n,n+1,1—1,s—1,0,1)

then the microlocal hypotheses verify all the assumptions of Theorem 2.1. Notice that the

main assumption, s > 3 + n/2, is required by the corresponding hypothesis (i) in Theorem

2.1. Let vo and =, approach the set g x {({,w) : |w| > |€'|}. The set

(TR ENO)] N T ES(I - Q)
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is contained in a small (conic) neighborhood of the Hamiltonian flow out of 4. Hence Theorem
2.1, Lemma 3.2 (in particular, the remarks there), and the microlocal initial hypotheses yield
that
we HEW[T (R N\EU(D) NI ES(T - Q) .

It follows from Lemma 3.2 that there exists a ¥».d.o. P of order zero such that

e P is elliptic on [T*(IR™")\ ElI(D)] N M;'ES(I - Q));

e [O,P] € OPSY;

e p is supported near {2, = 0}.

From the ellipticity of P, Lemma 3.1’and Garding’s type inequality Lemma 3.3 yield that

(T = Q)%sullis < Cllér PO%oullir + Clldull,

IN

Cllien P, ) dulli-r + Cllé1 Pdullien + Cligull,

AN

Cllgoulli + Cll1Poullipr + Cl|pull

for any r € IR. Thus the proof has been reduced to bounding ||¢; Péul|i4:.

Applying ¢, P¢ on both sides of equation (3.1), one has
0¢, Pou = (0,9, Podlu+ ¢ PdVo - Vu+ ¢ Pof .

Then the energy estimates together with a simple estimate implied by the commutator lemma

(Lemma 2.4) yield

¢1Poullizy < Clldoulls + Cllgoflli-1 + CligoPoSI]1 (3.6)



where C depends on the H*~! N ]1",/[,11’,(.[\')—1101‘111 of »Vo. Here we have used the fact that
p1(2,1) € CE(IR™) or ¢y(x,1) has compact support in t.
The proof of Theorem 3.1 is then completed. O

Two remarks on Theorem 3.1 are in order:

e Hypothesis (3.2) requires additional microlocal regularity near ¢ = 0, as demanded
by the application of the result on propagation of singularities. This hypothesis is
rather difficult to verify in practice. It seems that similar hypotheses are made in all
the previous results on propagation of singularities. We believe that with the help of
a duality argument Hypothesis (3.2) can be replaced by a hypothesis on microlocal
regularity of the Cauchy data on {¢t = 0}. Similar (but more subtle) approach may be
found in Bao and Symes [3]. Details of this and other related issues will be addressed

elsewhere.

o We conjecture that the regularity assumptions on the coefficients can not be strength-
ened, see our remark on Theorem 2.1. The fact that the local regularity assumption

on f is optimal is evident. However, it still remains to see that whether the microlocal

regularity requirement on f is optimal.
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